
 

 

  

Abstract—Modern perceptual image coders reach impressively 

high subjective quality even at low bit-rates but tend to denoise or 

“detexturize” the coded pictures.  Traditionally, two independent 

parametric approaches, known as texture and film grain synthesis, 

have been applied in the spatial domain as pre and post-processors 

around the codec to counteract such effects.  In this work, a unified 

alternative, operating directly within the spectral domain of con-

ventional transform codecs with tight coupling to the transform 

coefficient quantizer, is proposed.  Due to its design, this spectrally 

adaptive noise filling tool (SANFT) enables highly input adaptive 

realizations by reusing the coder’s existing optimized spatial and 

spectral partitioning algorithms.  Formal subjective evaluation in 

the context of a “main still picture” High Efficiency Video Coding 

(HEVC) implementation confirms the benefit of the proposal. 
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I. INTRODUCTION 

ERCEPTUAL transform coding of digital still images has 

evolved remarkably over the last two decades.  A quarter of 

a century after the completion of the JPEG image specification 

T.81 [1], formal objective and subjective evaluation of state-of-

the-art still image coding approaches was presented at the 2016 

International Conference on Image Processing (ICIP) [2].  In the 

visual assessments performed in the course of this evaluation, a 

“main still picture” coding profile of the H.265/High Efficiency 

Video Coding (HEVC) standard [3] was found to outperform, 

with statistical significance, most of the other coding techniques 

in visual quality across all tested images and bit-rates, without 

being exceeded in subjective quality by any other scheme [4]. 

Although the HEVC main still picture profile represents one 

of the most efficient picture coding designs available, like other 

methods it tends to introduce visible artifacts like blurriness or 

loss of textural detail in the reconstructed images.  The authors 

observed that, in particular, picture or camera noise and quasi-

random textures are softened by the coarse quantization of the 

“lossy” transform coder at very low bit-rates.  To alleviate this 

effect, two independent procedures, carried out at the decoder 

side upon image reconstruction, have been devised recently. 

The first method, texture synthesis, is intended to regenerate 

certain textural structures of foreground or background objects 

in images of natural scenes.  This approach is generally applied 
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in a parametric fashion by transmitting, to the decoder, auxiliary 

spectral and/or spatial information about the textural regions to 

allow guided synthesis [5]–[13].  Note that, on the one hand, a 

very compact description of the parametric side-information is 

critical particularly in low-rate coding, in order not to cancel the 

perceptual benefits of the texture synthesis by notably reducing 

the bit-budget of the underlying image coder. On the other hand, 

texture-specific artifacts due to insufficient parameter rates (see 

[5], [9]) or completely unguided synthesis shall be avoided. 

The second method, traditionally called film grain synthesis, 

is employed to recreate the film medium or camera sensor noise 

introduced into a natural image during its acquisition especially 

in low lighting conditions [14], [15].  The basic principle behind 

this approach is an additive image plus noise model: the image 

to be coded is split into a noise-like and a denoised component, 

the latter is compressed by a conventional coding solution, and 

the former is reconstructed, also in a usually guided parametric 

fashion, by a dedicated synthesis algorithm.  Then, the decoded 

denoised image is “renoised” by adding the synthesized noise-

like component [14]–[20].  The noise parameters comprise data 

such as higher-order statistics (variance, skewness, or kurtosis) 

[14], [20] or autoregressive model data [16]–[19] and may be 

acquired in either the spatial domain [14]–[19] or some spectral 

domain [20].  Notice that, in the abovementioned work, a single 

global noise model is used for the entire image (or video), thus 

limiting the ability of adapting to locally varying statistics espe-

cially in multi-source images such as computer screenshots. 

In this paper, a unification of the texture and film grain recon-

struction paradigms is presented.  The proposal, referred to as a 

spectrally adaptive noise filling tool (SANFT), bears three key 

advantages compared with the state of the art.  First, it avoids an 

explicit binary classification of the coded image into textural vs. 

nontextural spatial areas [7], [10] or noisy vs. denoised portions 

by way of filtering [14], [16]–[19].  This reduces the possibility 

of limited visual coding quality due to false classifications and 

yields seamless scaling of the codec to subjective transparency, 

two aspects which will be investigated in Section II.  Second, as 

shown in Section III, the proposal needs a low algorithmic com-

plexity and provides highly localized control over the synthesis 

process by means of a precise adaptation to the “instantaneous” 

spectral and spatial properties of the input picture to be coded. 
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Fig. 1.   Traditional parametric image coding with spatial-domain pre-processor 

and noise/texture synthesis as post-processor around a codec.  (- -) if applicable. 

 

 

Third, straightforward implementations into conventional block 

transform image coding designs are possible. In fact, Section IV 

reports on a SANFT integration into HEVC’s main still picture 

profile and on the preparation, execution, and outcome of a for-

mal subjective evaluation to assess its visual benefit in a typical 

use case.  Section V, lastly, summarizes and concludes the paper. 

II. NOISE OR TEXTURE SYNTHESIS IN IMAGE CODING 

The fundamental principle behind both texture and film grain 

regeneration, as outlined in Section I, is a segmentation into two 

components, of which one – the coarse structural part – is coded 

conventionally and the other – the fine textural detail – is para-

meterized by the transmitter and synthesized by the receiver.  A 

block diagram of this procedure is illustrated in Fig. 1.  For both 

synthesis schemes, segmentation can be done using local classi-

fication or denoising, followed by subtraction of the result from 

the input, yielding a residual to extract the model parameters. 

Fig. 1 shows that the extra parametric analysis and synthesis 

steps act as pre- and post-processors, respectively, to the legacy 

codec (coder/decoder).  This complicates both a low-complexity 

implementation of the parametric coding extension (as existing 

codec components cannot be reused) and a seamless transition 

towards visual transparency at very high rates (where texture or 

noise synthesis is unnecessary).  Specifically, the only means to 

reduce the amount of parametric synthesis in the decoded image 

at high bit-rates is to decrease the denoising strength until it is 

disabled, or by forcing any segmentation as in, e. g., [7], [10] to 

classify the complete image as nontextural and/or noise-free. 

In order to avoid these drawbacks, a structural modification 

of the approach of Fig. 1, shown in Fig. 2, is proposed.  Instead 

of applying the analysis and synthesis operations outside of the 

legacy codec, their execution is moved inside the codec, i. e., 

around the codec’s quantizer.  Moreover, with a transform coder 

like HEVC, where the quantization is applied to DCT or DST 

spectral coefficients obtained from a spatial-domain prediction 

residual block [3], the parameter extraction and noise or texture 

synthesis can be realized directly in the frequency domain. This, 

in turn, allows for a noisy-vs-nonnoisy respectively textural-vs-

nontextural partitioning into fully disjoint coefficient sets which 

overlap spatially but not spectrally.  By varying the spectral size 

of each set until one set is empty (and all available coefficients 

are collected in the other set), fine scalability between low-rate 

fully parametric and high-rate waveform coding is achieved. 

Moreover, in combination with a spatial adaptation of the set 

sizes depending on local image characteristics, the somewhat 

limiting binary image segmentation in the prior work becomes 

obsolete.  In other words, as shown hereafter, all denoising and/ 

or classification pre-processing can be replaced with the coder’s 

block partitioning as well as the residual quantization step itself. 

 

 

 
 

 

Fig. 2.    Proposed modification to the diagram of Fig. 1 with transform-domain 

parametric analysis and synthesis in the context of a modern transform codec. 

 

III. JOINT PARAMETRIC PARTITIONING AND QUANTIZATION 

Section I noted the removal of fine quasi-random texture and 

noise components of an image due to the coarse quantization in 

low-rate transform coding.  Assuming, similar to the film grain 

synthesis, an additive “structure (edges) plus texture (surfaces)” 

model in texture coding, a common explanation considers two 

disjoint quantized transform coefficient sets, SQ and NQ, with 

 

 SQ  ∈  TQ,  NQ  ∈  TQ,  SQ  ∩  NQ  =  ∅, (1) 

 

obtained for some local rectangular block of the input image, or 

a prediction residual thereof [21], using a forward DCT or DST. 

The coefficients T of this transform are quantized to TQ exhibi-

ting lower entropy than T.  Specifically, some coefficients in TQ 

are mapped to index zero even though the respective coefficient 

magnitudes in T are nonzero.  Let this “zero-quantized” subset 

of TQ be denoted by NQ, the noise part.  The remaining subset of 

TQ, containing all nonzero-indexed coefficients, shall be called 

SQ, the signal part.  It can be observed that, at low coding rates, 

NQ  ≈  TQ, SQ  ≈  ∅, while at very high rates, SQ  ≈  TQ, NQ  ≈  ∅.  In 

addition, the authors observed that NQ primarily comprises ran-

dom high-frequency coefficients (i. e., SQ has a low-pass shape) 

and that the variance of the coefficients in T corresponding to 

those in SQ exceeds the variance of the remaining coefficients 

in T associated with those in NQ.  This lets us conclude that, at 

sufficient bit-rates, NQ is primarily dominated by noise or text-

ure content, thus explaining the denoising effect of lossy image 

transform coders [15].  As such, NQ is efficiently representable 

by parametric models conveying, instead of coefficient indices, 

only a compactly coded description of statistical properties. 

It is worth emphasis that an alternative countermeasure to the 

denoising effect is the use of a subtractively or nonsubtractively 

dithered quantizer [22]. In case of coarse quantization, however, 

this results in more coefficients of TQ being nonzero, so SQ and, 

thereby, the entropy of TQ and the coding bit-rate increase. 

In HEVC and similar codecs, the types and sizes of the local 

transforms, applied to all image components (luma or chroma), 

are chosen input-adaptively by the encoder and signaled to the 

decoder so that appropriate inverse transforms can be applied. 

The search for optimal transform block segmentation is usually 

carried out jointly with the search for optimal prediction in a 

rate-distortion (RD) loop, and for the sake of maximized coding 

efficiency, this architectural property shall be maintained.  Note 

that, generally, the resulting spatial partitioning into transform 

units (TUs) also serves as a subjectively reasonable partitioning 

into local NQ parameter units and can simply be reused, hence 

avoiding the need for additional algorithmic operations.  Analo-

gously, a low-complexity spectral partitioning of each TQ into 

subsets SQ and NQ can be realized by just letting the transform 



 

 

coefficient quantizer “do its job”.  Notice that the size of subset 

NQ – and, thereby, the amount of denoising – can be influenced 

by traditional encoder-side optimizations such as static or input 

adaptive quantizer deadzone variation [23], [24].  This renders 

the codec-external pre-processing methods of Fig. 1 obsolete. 

IV. INTEGRATION INTO HEVC AND SUBJECTIVE EVALUATION 

Since, as shown in Section III, both spatial and spectral par-

titioning for input-adaptive parametric noise/texture coding can 

be inherited from the underlying image transform codec, a low-

complexity variant of the SANFT proposal was integrated into 

version 16.7 of the HEVC reference software [25] as follows. 

A. Implementation of SANFT into HEVC Reference Software 

In HEVC, the largest spatial partition size is the coding tree 

unit (CTU, 64 × 64 pels), which is split recursively into smaller 

transform units (TUs, minimum size 4 × 4 pels) by a quad-tree 

based on RD considerations. Exploiting this quad-tree, which is 

signaled in the bit-stream, a set of parametric model parameters 

can be explicitly assigned to (and transmitted for) each NQ asso-

ciated with a TU after the D × D pels belonging to that TU have 

been transformed and the resulting D × D transform coefficients 

T have been quantized.  To reduce the parameter rate overhead, 

it was found beneficial to encode only one set of (averaged) NQ 

parameters for each 8 × 8 image region split into 4 × 4 TUs. 

With respect to the spectral partitioning, the overall bit-rate 

increase due to the SANFT parameters can be partially compen-

sated for by adaptively increasing the quantizer’s deadzone in a 

similar fashion as the optimized quantization approach in EVS 

audio coding [24].  More precisely, by successively zeroing out 

higher-frequency coefficients of TQ initially quantized to index 

magnitude one, until a coefficient with a greater magnitude has 

been reached (beginning at the highest frequency and ending, at 

the latest, at half that frequency), the number of elements in NQ 

can be increased.  This, in turn, reduces SQ and, thereby, the bit-

rate required for entropy coding of TQ, without causing visible 

blur (i. e., loss of structural detail) in the decoded image. 

Noise parameter extraction and coding:  The authors follow 

the notion that natural texture, like film grain, often exhibits a 

noise-like character [8] and make use of the parametric model 

applied for spectral-domain noise filling in recent MPEG audio 

coders [26], [27].  Following the QP-dependent scaling (normal-

ization) of T, quantization to TQ, and definition of NQ ∈ TQ, a 

noise level l is derived in each TU t from the coefficients of T 

at the same frequencies as their respective counterparts in NQ: 
 

 lt  =   ∑ |c|,  C  =  {c  ∈  T  :  cQ  ∈  NQ}, (2) 

   c ∈ C 

with c being the scaled coefficients of T and |NQ| the size of C. 

Note that, for better stability of the analysis, it was beneficial to 

exclude the coefficient with the lowest possible frequency (first 

coefficient in T, i. e., DC offset in DCT-II) if that is included in 

NQ, unless the employed transform is an identity one.  With only 

moderate deadzone adaptations assumed, 0 ≤ lt ≤ 0.5 due to the 

normalization of T and, thus, lt can be easily quantized, e. g., via 
 

 lt
Q  =  0  if  lt  ≤  ,  lt

Q  =  ⌊10 + 2 log2 lt⌉  otherwise. (3) 

 

 

 

 
 

Fig. 3.    Extraction of SANFT level parameter l in the HEVC transform domain. 

Note: the lowest-frequency coefficient is excluded from analysis.  (- -) optional. 

 

 
In addition, a noise shape or granularity parameter g is defined 

for the given picture.  This g  ≤ 1 represents the average spectral 

tilt (or low-pass characteristic) of all coefficients in T associated 

with a c ∈ C.  For this work, g is chosen based on the dimensions 

of the input image: for high-resolution (e. g., 3840 × 2160) con-

tent, where textures generally appear larger and coarser, g  =  √ .  

while for smaller and finer input (e. g., 1920 × 1080), g  = 1.  For 

g < 1, it makes sense to define a lowpass subset of NQ as follows: 

 

 NQ'  =  {cQ[x, y]  ∈  NQ  :  x  <  ⌊w g⌉,  y  <  ⌊h g⌉}, (4) 

 

where w and h are the width and height, respectively, of the TU 

t in luma pel units and x and y are the horizontal and vertical 

coordinates, respectively, of cQ.  Using NQ' of (4), which defines 

the frequency region of TQ to be noise filled at the decoder side, 

more accurate lt can be derived by replacing NQ with NQ' in (2): 
 

 lt  =   ∑ |c|,  C'  =  {c  ∈  T  :  cQ  ∈  NQ'}. (5) 

  c ∈ C' 

Note that g does not need to be transmitted in the bit-stream. 

The spatiospectrally localized SANFT parameterization via lQ, 

hence, suffices to convey to the decoder the essential statistical 

properties of the film grain or textures to be reconstructed.  The 

lQ are coded arithmetically and differentially using Martucci’s 

minimum adaptive prediction from spatially neighboring deco-

ded lQ values [28].  Fig. 3 summarizes the encoding process. 

Noise parameter decoding and parametric synthesis:  At the 

receiver, the transmitted TQ, lQ, and QP indices are subjected to 

entropy decoding and, if applicable, inverse spatial prediction. 

lt is then reconstructed to 0 ≤ lt' ≤ 0.5 using the decoded index: 

 

 lt'  =  0  if  lt
Q  =  0,  lt'  =  2(ltQ – 10)/2  otherwise. (6) 

 

The actual SANFT application, i. e., noise synthesis, in each TU 

is performed separately from the inverse transform of the asso-

ciated TQ (whose operation is left unchanged) in four steps. 

First, the spectral region of TQ to be noise filled is determined 

by (4), with g defined identically to that in the encoder based on 

the image size.  As at the encoder side, for g  < 1, NQ' represents 

a low-frequency subset of NQ, and the lowest-frequency “DC” 

coefficient in TQ is excluded from NQ' if it was quantized to zero 

and the employed forward transform was a DCT or DST.  The 

NQ' coefficients are now substituted by pseudo-random values, 

e. g., randomly signed unity values as in [27] or signed outputs 

of a unity-variance linear congruential pseudo-random number 

generator [29], which are then scaled (i. e., multiplied) by lt'.  In 

this work, the signs of 32-bit pseudo-random integers generated 

according to [29] were used as randomly signed unity values. 



 

 

 

 

 

 

 
Fig. 4.    SANFT transform-domain noise synthesis using transmitted TQ and l', 

followed by scaled inverse transforms to obtain the spatial-domain noise image. 

 

 

As the second step, NQ' is padded with zeros at the locations 

of the remaining coefficients in TQ not included in NQ' and is 

subjected to the same inverse transform as that applied to TQ, 

utilizing the same QP value and fixed-point representation for 

scaling.  This ensures that the synthesized waveform coded and 

parametric parts are spectrally disjoint and compatibly scaled, 

as initially desired.  The inverse transforms are applied for each 

t and CTU covering the given picture and, thus, result in a tem-

porary noise image that is, as the third step, added to the legacy 

decoded denoised image for the final “renoised” reconstruction. 

Generating the temporary noise image instead of applying a 

single joint inverse transform to the TU-wise mix of TQ and NQ' 

bears two advantages.  On the one hand, it allows for HEVC’s 

spatial predictive coding to be undone using only the waveform 

coded, but not the noise filled, parametric parts.  Given that the 

random noise components would lower the prediction gain, this 

architectural design guarantees that the core transform coding 

efficiency is maintained.  On the other hand, a delayed renoising 

after HEVC’s deblocking [30] and SAO deringing [31] can be 

realized, thus ensuring uncompromised post-filtering efficiency 

and preventing unwanted image denoising after the renoising. 

Having synthesized the noise component, the fourth and final 

step in the decoder-side SANFT algorithm is the addition of the 

temporary noise picture to the traditionally decoded, denoised, 

and post-filtered image to obtain the output picture.  Note that a 

coded image is typically split into luma (Y) and chroma (U, V) 

components.  To limit both the algorithmic complexity and side 

information overhead without reducing the subjective merit too 

much, a SANFT realization operating only on the luma channel 

was used for the subjective evaluation, which is discussed in the 

next subsection.  Fig. 4 visualizes the SANFT decoding process. 

B. Assessment of Objective Aspects and Visual Performance 

The SANFT integration into main still picture HEVC coding 

was evaluated both objectively and subjectively.  To this end, 

the first frames of 11 full high definition (FHD) and ultra-high 

definition (UHD) 8-bit YUV video sequences used during the 

HEVC standardization [21], [30]–[33] (classes A and B) were 

coded with and without the SANFT coding and processing.  The 

global (average) QP index was set to 35, for moderate quality, 

and 30, for higher quality, RD optimized quantization was used 

in each CTU, and all other coding parameters were either set to 

the default values of the reference software HM 16.7 [32] or, in 

case of activated SANFT, configured as discussed above. 

For objective evaluation, the average bit-stream increase or, 

in other words, side-information rate consumed by the encoded 

lQ indices was measured.  This overhead was found to be nearly 

constant across the two QP operating points and, thus, causes a 

greater relative bit-stream growth at low rates (4–5 % at QP 35) 
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Fig. 5.    Zoomed result (with 95 % CIs) of the subjective DCR test for two rates. 

 

 

than at higher rates (2.5–3 % at QP 30).  The decoder complexity 

increases by roughly 25 % due to the noise synthesis, primarily 

because of the extra TU-wise inverse transforms required. 

The subjective evaluation was carried out using formal visual 

comparative tests following the ITU BT.500 methodology [34]. 

Specifically, a degradation category rating (DCR) experiment 

with sequence-wise simultaneous 10-second presentation of the 

uncoded input, on the left, and the coded version, on the right, 

assessed on a nine-grade numerical degradation scale according 

to Annex C and Appendix V, respectively, of ITU-T P.910 [35] 

was conducted.  Each input/coded image pair was, if necessary, 

cropped to FHD resolution and depicted side-by-side on top of 

a gray background on a color-calibrated 65-inch LG E6 OLED 

television.  An uncoded/uncoded hidden reference pair was also 

shown for each sequence at random points during the tests for 

post-screening purposes.  Fourteen subjects (incl. two females) 

with normal color perception (as verified using an Ishihara test), 

aged between 24 and 35, participated.  The voting period after 

each image pair presentation was unlimited to allow the viewers 

to take voluntary short breaks.  The viewing distance for all par-

ticipants was restricted to the range 3H–3.5H, with H  =  0.4 m 

for this study, i. e., half the height of the E6’s UHD panel. 

The mean opinion score (MOS) and associated 95 % confi-

dence interval (CI, derived assuming a Student’s t distribution) 

for each codec configuration and QP operating point is depicted 

in Fig. 5.  Note that all illustrated values were derived using data 

from only 12 of the 14 viewers since the scores of two subjects 

had to be post-screened (one due to an excessively low MOS of 

5.36 for the hidden reference and one because of an excessively 

high MOS of 7.54 when averaged across all stimuli).  For these 

12 viewers, the hidden reference attains a MOS of 8.22 and a 

CI of ±0.18, indicating sufficiently stable and accurate grading 

(MOS 8 is regarded the threshold of artifact perception [35]). 

When linearly connecting corresponding codec conditions at 

the two QP points, as in Fig. 5, and interpolating the MOS and 

associated CI values along these lines, it is found that, around 

the QP 30 rate, the SANFT approach increases the visual coding 

quality by a small but statistically significant (p < 0.05) margin. 

At this QP, the two sequences scoring worst with legacy HEVC, 

HomelessSleeping (MOS 5) and ParkScene (MOS 4.5), benefit 

most from the noise filling (their MOS values improve by 1 and 

1.9, respectively).  The SANFT, thus, allows for more balanced 

and input independent reconstruction quality.  A demonstration 

of these two sequences for personal viewing is provided in Figs. 



 

 

6 and 7 and, using a slightly improved bugfixed version, at [36]. 

At very low rates near (or below) the QP 35 point, the SANFT 

synthesis does not lead to an overall subjective quality improve-

ment because of the added bit-stream overhead.  Moreover, due 

to the coarse quantization there, NQ tends to comprise undesired 

structural image components (e. g., edges) alongside the noise 

and texture components, so the assumption of Sec. III does not 

hold anymore and the parametric model becomes inaccurate. 

V. CONCLUSION 

This paper examined the issue of reduced film grain or texture 

detail in images after “lossy” compression using modern trans-

form coders like HEVC. As an alternative to, and unification of, 

traditional parametric film grain and texture synthesis methods, 

a spectrally adaptive noise filling tool, operating closely around 

the underlying coder’s transform domain quantizer, was presen-

ted and found to significantly improve the visual coding quality 

on some input images with only a moderate increase in algorith-

mic decoding complexity.  A demonstration is available at [36], 

and further subjective evaluation using better-known still image 

test-sets, such as Kodak’s Color Image Suite [37], is planned. 
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(a) uncoded original 8-bit image (UHD, losslessly coded size: 7842 KB) 

 

 

(b) “main still picture” 8-bit HEVC (HM 16.7, UHD, coded size: 27.1 KB) 

 

 

(c) “main still picture” 8-bit HEVC + SANFT (UHD, coded size: 28.4 KB) 

 

Fig. 6.    SANFT applied to HEVC coded HomelessSleeping still image, QP 30. 

The image dimensions are 2560 × 1600, here cropped to 768 × 512 for visibility. 

 

 

(a) uncoded original 8-bit image (FHD, losslessly coded size: 4796 KB) 

 

 

(b) “main still picture” 8-bit HEVC (HM 16.7, FHD, coded size: 81.9 KB) 

 

 

(c) “main still picture” 8-bit HEVC + SANFT (FHD, coded size: 84.7 KB) 

 

Fig. 7.    SANFT demonstration on HEVC coded ParkScene still image, QP 30. 

The image dimensions are 1920 × 1080, here cropped to 768 × 512 for visibility. 

 

 

 


