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I. INTRODUCTION 

URING the development, evaluation, and maintenance of 

coding methods for the compression of still or moving pic-

tures, it is frequently necessary to write, store, read, and archive 

uncompressed planar picture data as illustrated in Fig. 1, where 

each of the coded image components—typically red-green-blue 

(RGB) or luminance-chromatic (YUV)—are conveyed in non-

interleaved picture-by-picture fashion.  In case of high dynamic 

range (HDR) content, each picture component, called plane in 

the following, consumes more than 8 bit of capacity per image 

sample.  For such word-lengths, only few format specifications 

have been published [1], and none of these cover the common 

use case of 4:2:0 YUV data with 10 or 12 bit per image sample 

applied in most image and video coding applications.  The only 

common approach to convey uncompressed planar 4:2:0 YUV 

HDR image data is to write each 10 or 12-bit sample into a 16-

bit word, which increases the required capacity by 33–60 %. 

Therefore, we propose a packed planar 4:2:0 compatible un-

compressed storage and transmission format, which we refer to 

as PRGB (for red-green-blue data) and PYUV (for luminance-

chromatic content).  This packed format can be specified for 

• 10 bit per sample (PRGB10 and PYUV10) as in Section II, 

• 12 bit per sample (PRGB12 and PYUV12) as in Section III, 

• 14 bit per sample (PRGB14 and PYUV14) as in Section IV. 

Note that, for 8-bit and 16-bit sample data, our format definition 

reduces to the conventional planar YUV specifications [2], [3]. 

It is also worth mentioning that the PYUV format supports 4:4:4 

chromatic image content which is not spatially downsampled. 
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Fig. 1.   Principle of planar picture data representation: (a) Still image, (b) video. 
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II. PACKED RGB OR YUV DATA WITH 10 BIT PER SAMPLE 

For a sample word-length of 10 bit, we propose to pack, for 

each image plane, four successive component samples (starting 

left-to-right with the first horizontal picture line and continuing 

vertically downward with the next picture line) into five bytes, 

i. e., into a 40-bit word as in Tab. 1. Thus, the number N of image 

samples in each plane must equal an integer multiple of four. 
 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 out[5*n]  = ( ( buf[4*n]   ) & 0xff ); 
 out[5*n+1] = ( ( buf[4*n+1] << 2 ) & 0xfc ) + ( ( buf[4*n]     >> 8 ) & 0x03 ); 
 out[5*n+2] = ( ( buf[4*n+2] << 4 ) & 0xf0 ) + ( ( buf[4*n+1] >> 6 ) & 0x0f ); 
 out[5*n+3] = ( ( buf[4*n+3] << 6 ) & 0xc0 ) + ( ( buf[4*n+2] >> 4 ) & 0x3f ); 
 out[5*n+4] = ( ( buf[4*n+3] >> 2 ) & 0xff ); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
List 1.   Write-out of PRGB10 and PYUV10 data for each plane and 0 ≤ n < N/4. 

 

III. PACKED RGB OR YUV DATA WITH 12 BIT PER SAMPLE 

For a sample word-length of 12 bit, we propose to pack, for 

each image plane, two successive component samples into three 

bytes, i. e., a 24-bit word as in Tab. 2.  Hence, the number N of 

image samples per plane must equal an integer multiple of two. 
 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 out[3*n]  = ( ( buf[2*n]   ) & 0xff ); 
 out[3*n+1] = ( ( buf[2*n+1] << 4 ) & 0xf0 ) + ( ( buf[2*n] >> 8 ) & 0x0f ); 
 out[3*n+2] = ( ( buf[2*n+1] >> 4 ) & 0xff ); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
List 2.   Write-out of PRGB12 and PYUV12 data for each plane and 0 ≤ n < N/2. 

 

IV. PACKED RGB OR YUV DATA WITH 14 BIT PER SAMPLE 

For a sample word-length of 14 bit, we propose to pack, for 

each image plane, four successive samples into seven bytes, i.e., 

a 56-bit word.  Thus, N must equal an integer multiple of four. 
 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 out[7*n]  = ( ( buf[4*n]   ) & 0xff ); 
 out[7*n+1] = ( ( buf[4*n+1] << 6 ) & 0xc0 ) + ( ( buf[4*n]     >> 8 ) & 0x3f ); 
 out[7*n+2] = ( ( buf[4*n+1] >> 2 ) & 0xff ); 
 out[7*n+3] = ( ( buf[4*n+2] << 4 ) & 0xf0 ) + ( ( buf[4*n+1] >> 10 ) & 0x0f ); 
 out[7*n+4] = ( ( buf[4*n+2] >> 4 ) & 0xff ); 
 out[7*n+5] = ( ( buf[4*n+3] << 2 ) & 0xfc ) + ( ( buf[4*n+2] >> 12 ) & 0x03 ); 
 out[7*n+6] = ( ( buf[4*n+3] >> 6 ) & 0xff ); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
List 3.   Write-out of PRGB14 and PYUV14 data for each plane and 0 ≤ n < N/4. 
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 Sample  | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | 

 –––––––––|–––––––––––––––––––––––––––––––––––––––––––––| 
 4*n   | 76543210 |             98 | 
 4*n+1      | 543210  |         9876 | 
 4*n+2          | 3210  |     987654 | 
 4*n+3              | 10   | 98765432 | 

 –––––––––|–––––––––––––––––––––––––––––––––––––––––––––| 
Tab. 1.   Layout of sample bits (0–9) in a 40-bit PRGB10/PYUV10 code-word. 

 

 
 Sample  | Byte 1 | Byte 2 | Byte 3 | 

 –––––––––|–––––––––––––––––––––––––––| 
 2*n   | 76543210 |         ba98 | 
 2*n+1      | 3210  | ba987654 | 

 –––––––––|–––––––––––––––––––––––––––| 
Tab. 2.   Layout of sample bits (0–b) in a 24-bit PRGB12/PYUV12 code-word. 

 

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 buf[2*n]  = ( ( in[3*n]     & 0xff  )     ) + ( ( in[3*n+1] & 0x0f ) << 8 ); 
 buf[2*n+1] = ( ( in[3*n+1] & 0xf0 ) >> 4 ) + ( ( in[3*n+2] & 0xff  ) << 4 ); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
List 4.   Read-in of PRGB12/PYUV12 data.  Similar code for other bit-depths. 
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