VISUALLY OPTIMIZED TWO-PASS RATE CONTROL FOR VIDEO CODING USING THE LOW-COMPLEXITY XPSNR MODEL VCIP 2021

Christian R. Helmrich, Ivan Zupancic, Jens Brandenburg, Valeri George, Adam Wieckowski, and Benjamin Bross – Fraunhofer HHI

INTRODUCTION

- Rate control (**RC**) methods required when generating compressed video catalogs
- Used by streaming service providers & traditional broadcasters for online content
- Goal: encode such that target bitrate R_{T} is achieved, on average, across the video
- Videos are often encoded (or transcoded) offline, allowing two-pass RC schemes
- Two-pass RC typically offers better performance than a single-pass RC equivalent
- Fast 1st RC pass for analysis, 2nd RC pass for final encoding based on 1st-pass data RC functional flowchart ______ R_T, W, H, F, fps, bit-depth, etc. Effect of corrective second R-QP step

MOTIVATION

- Few studies of visual quality optimization combined with RC, especially two-pass
- No published two-pass RC design for Versatile Video Coding (VVC, GOP¹ size 32)
- Existing RC methods were found to perform sub-optimally in the context of VVC

CONTRIBUTIONS

- Simple and implementation friendly two-step R-**QP** (instead of R- λ) model for RC
- Use of XPSNR low-complexity psychovisual model for visual QP adaptation, SCD²

TWO-STEP R-QP MODEL replaces traditional hyperbolic $\lambda = \alpha \cdot r^{\beta}$ model

- 1st RC pass: encode with $QP_{\text{base}} = \text{round}\left(40 \sqrt{\frac{3840 \cdot 2160 \cdot R_{\text{T}}}{W \cdot H \cdot 500000}}\right)$ and derived QP_f , λ_f 2nd pass: set $QP'_{\text{base}} = QP_{\text{base}} \check{c} \cdot \sqrt{QP_{\text{base}}} \cdot \log_2\left(\frac{R_{\text{T}} \cdot F}{fps \cdot \Sigma_f r_f}\right)$ and QP'_f with 1st-pass r_f 2nd model step: correct QP'_{base} and QP'_f as in left figure; set $\lambda''_f = \lambda_f \cdot 2^{(QP''_f QP_f)/3}$
- 1st model step: $QP'_{f} = \operatorname{round} \left(QP'_{f} + \hat{c} \cdot \max(0; QP_{\text{start}} QP'_{f}) \right)$

XPSNR MODEL

- CTU-level QP adaptation based on visual sensitivity measure of XPSNR algorithm
- Ratio between successive frame visual activities usable for SCD². See also tutorial

EXPERIMENTAL RESULTS

- Integrated & tested in open VVC encoder VVenC³, random-access configuration
- Results measured in Bigntegaard delta-rate (BD-R), JVET's set (CTC⁴) + HHI videos
- Subjective guality gain via XPSNR, objective BD-R gains; timing relative to VTM
 - without **OPA** with XPSNR OPA

Outlook: modifications for live streaming operation

